Analytic Besov spaces and Hardy-type inequalities in tube domains over symmetric cones
نویسندگان
چکیده
We give various equivalent formulations to the (partially) open problem about Lboundedness of Bergman projections in tubes over cones. Namely, we show that such boundedness is equivalent to the duality identity between Bergman spaces, A ′ = (Ap)∗, and also to a Hardy type inequality related to the wave operator. We introduce analytic Besov spaces in tubes over cones, for which such Hardy inequalities play an important role. For p ≥ 2 we identify as a Besov space the range of the Bergman projection acting on L, and also the dual of A ′ . For the Bloch space B∞ we give in addition new necessary conditions on the number of derivatives required in its definition.
منابع مشابه
Wavelet Decomposition Techniques and Hardy Inequalities for Function Spaces on Cellular Domains
A rather tricky question is the construction of wavelet bases on domains for suitable function spaces (Sobolev, Besov, Triebel-Lizorkin type). In his monograph from 2008, Triebel presented an approach how to construct wavelet (Riesz) bases in function spaces of Besov and Triebel-Lizorkin type on cellular domains, in particular on the cube. However, he had to exclude essential exceptional values...
متن کاملWeighted Hardy-Sobolev Spaces and Complex Scaling of Differential Equations with Operator Coefficients
In this paper we study weighted Hardy-Sobolev spaces of vector valued functions analytic on double-napped cones of the complex plane. We introduce these spaces as a tool for complex scaling of linear ordinary differential equations with dilation analytic unbounded operator coefficients. As examples we consider boundary value problems in cylindrical domains and domains with quasicylindrical ends.
متن کاملWeighted iteratedHardy-type inequalities
In this paper a reduction and equivalence theorems for the boundedness of the composition of a quasilinear operator T with the Hardy and Copson operators in weighted Lebesgue spaces are proved. New equivalence theorems are obtained for the operator T to be bounded in weighted Lebesgue spaces restricted to the cones of monotone functions, which allow to change the cone of non-decreasing function...
متن کاملSome functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملHolomorphic Besov Spaces on Bounded Symmetric Domains, II
The paper continues the study of a class of holomorphic Besov spaces on bounded symmetric domains which was initiated in [18]. Several new descriptions of these Besov spaces are given in terms of weighted Bergman projections and fractional differential operators. These new characterizations are then applied to obtain results about the duality of, and Hankel operators on, weighted Bergman spaces...
متن کامل